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1. Introduction

Seafarers have navigated the ocean for millennia,
but the study of the deep ocean is more recent.
Global subsurface observations were first recor-
ded 150 years ago, during the Challenger expedi-
tion (1872–1876). Deep oceanography and seafloor
mapping subsequently benefited from technological
developments induced by the world wars, includ-
ing submarines and sonars to detect them, which
led to the need to know vertical profiles of ocean
sound speed (hence density). In parallel, oceano-
graphic instruments improved: early hydrographic
measurements were collected laboriously using ther-
mometers, buckets, and the like; instruments now
automatically and rapidly record conductivity, tem-
perature, and pressure at high precision as they
profile the water column, either autonomously or
from an electrically-wired winch. The International
Geophysical Year 1957–1958 kicked off the effort
to systematically measure the deep ocean, includ-
ing studies of deep water renewal and oceanographic
transects throughout the North Atlantic, Arctic, Nor-
dic Seas, and Mediterranean. Observations collected
during subsequent international programs, recently
the Global Ocean Ship-based Hydrographic Invest-
igations Program (GO-SHIP), have increased our
understanding of the deep ocean’s value as an anthro-
pogenic carbon and heat sink, with adverse impacts
including ocean warming, acidification, and sea level
rise.

Human activities have other detrimental effects
on the oceans. Fishing is extending ever deeper, with
bottom trawlers scarring the sea-floor. Potentially
even more damaging to the fragile deep sea environ-
ment is the prospect of mining there, which would
destroy wide swaths of the sea floor including slow-
forming black smokers and unique extremophile eco-
systems (Williams et al 2022). The deep ocean has also

been used for waste disposal: up until the 1990s, nuc-
lear waste was often disposed of in the deep ocean,
and plastic waste has been found even at the bot-
tom of the Mariana Trench. Assessing this damage
to the deep ocean is difficult as it remains widely
under-observed.

Below we review what we know about the roles of
the deep ocean in climate science, argue that it is high
timewe turn our collective attention to this part of the
climate system, both in observations and modelling,
and suggest practical ways to start doing so now.

2. The deep ocean is the largest yet least
observed component of the climate system

The deep ocean occupies a large fraction of our cli-
mate system. Earth’s surface is 71% ocean, of which
79% is deeper than 2000 m (figure 1). Globally, the
average depth is ∼4000 m, twice as deep as tradi-
tionally monitored by the Argo program, an array of
∼4000 autonomous profiling robots thatmeasure the
upper ocean’s temperature and salinity (Roemmich
et al 2019). The Arctic Ocean is the anomaly, with a
shallow continental shelf occupying half of that ocean,
but even there, depths reach 5500 m. Using ocean-
ographic definitions, ‘deep’ waters such as North
Atlantic Deep Water (NADW) and Antarctic Bot-
tomWater (AABW) occupy the majority of the water
column globally (figure 2; Johnson 2008).

Yet the deep ocean is extremely poorly observed.
Fewer than 200 000 profiles reach deeper than 2100m
depth, only 3% of the 6.5 M profiles that reach at
least 500 m. Their spatial distribution is unequal
(figure 1): the bulk of the observations are in the
North Atlantic, Mediterranean, and North Pacific,
while entire regions of the tropics and high latitudes
have never been measured. With research funding
always tight, monitoring the deep ocean is often given
low priority owing to (a) the high cost associated with

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/aca622
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aca622&domain=pdf&date_stamp=2022-12-6
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8850-5868
https://orcid.org/0000-0002-1893-6224
https://orcid.org/0000-0002-8023-4020
mailto:celine.heuze@gu.se


Environ. Res. Lett. 17 (2022) 121002 C Heuzé et al

Figure 1. The global ocean is deep and poorly observed. All areas that are neither grey (land) nor white (shallow seas) are deeper
than 2000 m. Yellow dots indicate hydrographic profiles reaching deeper than 2100 m (i.e. not sampled by a standard Argo float)
in the EN4 database (Good et al 2013), collected since January 1900. Panel (a) shows the global ocean, while panels (b) and
(c) feature the Arctic and Southern Ocean, respectively. Bathymetry from GEBCO (2022).

its remoteness and technological challenges of work-
ing in extremely high-pressure environments and (b)
the historical perspective that the deep ocean is isol-
ated and slow to change, thus needing less frequent
observations. Recent studies have, however, shown
that the deep ocean is an active part of our climate
system capable of changing on short time scales.With
deep Argo floats now reaching 6000 m (Roemmich
et al 2019), it is high timewe reconsider our priorities.

3. The deep ocean is changing, globally

From simple theoretical frameworks to complex data-
driven state estimate models, it is well understood
that the conditions at the surface ocean affect the
deep ocean. NADW and AABW form as surface water
becomes denser, via interaction with the atmosphere
and/or ice, and sink to fill much of the global deep
and abyssal ocean (figure 2). The Arctic (not shown)
is filled from 200 m down by different flavours of

NADW, modified at many timescales from double-
diffusive convection to entrainment (e.g. Rudels et al
2013). AABW and NADW feed the deep limbs of the
meridional overturning circulation (MOC), circulat-
ing on time scales of a millennia. The MOC moves
heat, freshwater, carbon, oxygen, and nutrients from
surface to deep, between ocean basins, and affects
weather and climate.

Recent observations are revealing decadal variab-
ility in the deep ocean with radical implications for
our climate system. Over the past three decades, deep
ocean basins around the globe have shown bottom-
intensified warming trends, largest in the Southern
Ocean, accounting for ∼10% of the total anthropo-
genic global energy imbalance and ∼4% of the steric
sea level rise rate (Purkey and Johnson 2010). Near
source regions of AABW inAntarctica, deep Argo and
ship-based observations have shown year to year vari-
ability in the properties and quantity of AABW pro-
duced (e.g. Foppert et al 2021, Thomas et al 2020)
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Figure 2. Antarctic BottomWater (AABW) and North Atlantic Deep Water (NADW) fill the global deep ocean. Zonally averaged
fractions of AABW (left) in the three major ocean basins, following Johnson (2008), are generally above 0.5 in the Indian and
Pacific oceans deeper than 2000 m, with a weaker presence in the Atlantic, where NADW (right) dominates. AABW
concentrations are highest in the Southern Ocean. The Antarctic Circumpolar Current carries diluted NADW eastward into the
Indian and Pacific oceans, where it spreads northward, further diluted.

driven by surface forces on the shelf (Silvano et al
2020). A decrease in AABW formation rates can
quickly drive deep ocean warming around the globe
owing to a slowdown in the renewal of the cold deep
waters, consistent with the signal we have recently
observed (Purkey and Johnson 2012). Furthermore,
an acceleration of deep warming has been observed
in the deep Pacific (Johnson et al 2019).

In the North Atlantic, the formation and proper-
ties of NADW have shown intense interannual vari-
ability, with direct implications for Europe’s climate.
Themeridional transport associated with the Atlantic
MOC (AMOC) has begun to be monitored in some

locations (see www.o-snap.org/). Years with active
deep convection see vigorous overturning, bringing
oceanic heat north where it is exchanged with the
atmosphere, while there have been years of little to
no convection, set by local conditions. Paleo observa-
tions andmodels both suggest the AMOC can achieve
alternative steady states, and the International Panel
on Climate Change (IPCC) most recent assessment
shows a highly likely weakening of the AMOC over
the coming century due to anthropogenic forcing,
although the magnitude is still unknown. Even the
bottom of the Arctic Ocean has warmed four times
faster than expected from geothermal heating alone
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(Rudels et al 2013), and the deep Eurasian Arctic has
been shown to be far more dynamic than previously
believed, with large mesoscale variability and deep
eddies (Rabe et al 2022).

4. We cannot project future changes
accurately

The global climate models currently used to pro-
ject near- to long-term responses to ongoing climate
change, or Climate Model Intercomparison Project
phase 6 models (CMIP6, Eyring et al 2016), need
observations for their design, tuning, and quality
checks. The poorly observed deep ocean is therefore
poorly represented in those models. For both AABW
and NADW, the models exhibit strong and divergent
biases in their water mass properties, formation pro-
cess, transports, and extent (Heuzé 2021). Moreover,
there is no strong improvement since CMIP5 (Heuzé
2021), or rather improvement of one aspect tends to
lead to a stronger bias in another, because of past can-
celling biases. The deep waters of the Arctic are even
more poorly represented (Heuzé et al 2022). Con-
sequently, very large uncertainties are associated with
projections of deep water changes and their impacts
on e.g. sea level rise, globally (e.g. Heuzé et al 2015).

Model geometry also plays a substantial role in
these biases. Deep water formation can take place via
two phenomena: deep convection, i.e. intense vertical
mixing down to >1000m, and dense water overflows,
usually from a shallow continental shelf to the deep
ocean. Deep convection is actively prevented by the
models’ global mixing scheme, as it is undesirable at
all locations except the few high latitude areas where
deep waters form. Similarly, overflows are stopped
by standard vertical grid types combined with mix-
ing schemes, which do not preserve that thin very
dense layer but rather strongly mix it to dissipate it
as it travels off-shelf. Besides, standard vertical grid
types along with the global coupled models’ relatively
coarse resolution lead to a poor representation of the
bathymetry, crucial for transport representation. In
theNorthAtlantic for example, somemodels omit the
Faroe Islands, others place them in the wrong loca-
tion, which strongly impacts the poleward transport
of heat by the deep AtlanticWater (Heuzé and Årthun
2019).

5. What we need to do

The deep ocean is responding to climate change,
delaying or mitigating its effects through heat and
carbon sequestration, but consequently warming,
expanding, and acidifying. Despite its importance,
the deep ocean is notwell represented in climatemod-
els, thus preventing us from projecting how it will
respond in the future. For these reasons andmore, the
obvious first step is to obtain more data. As a com-
munity, we need to implement a global deep ocean

observing network that will adequately monitor the
deep ocean’s physical, chemical, and biological vari-
ability, as suggested by the UN decade for ocean sci-
ence (e.g. Howell et al 2021), and its endorsed Deep
Ocean Observing Strategy. From ships, we need to
continue collecting high-quality full depth ocean pro-
files, including water samples of the biogeochem-
istry and tracer data, with systematic surveys such
as those provided by international GO-SHIP (www.
go-ship.org/), in addition to optimising ship time to
allow for opportunistic full-depth casts.Most import-
antly, as we have learned from the upper ocean, to
fully monitor the vast deep ocean and its variability,
wemust utilise autonomousmeasurement platforms.
Deep Argo is now ready, offering the opportunity, for
the first time, to monitor the full-depth ocean tem-
perature and salinity globally and continuously in real
time (Roemmich et al 2019). A global deep Argo array
of 1225 floats, a third of the current traditional Argo
fleet, would collect more full-depth temperature and
salinity profiles in 5 years than are available now in
historical archives. Enhanced data coverage from such
an array would shed light on both the variability and
mechanisms controlling it, allowing for integration
intomodels, and hencemore accurate decadal climate
forecasts and longer-term climate projections.

Climate models likewise would benefit from a
renewed focus on the deep ocean. Already large
efforts are underway to better represent high latit-
udes, from latitude-dependent schemes to the imple-
mentation of interactive ice sheets allowing for more
realistic modelling of deep ocean properties. Further-
more, overflow parameterisations (e.g. Danabasoglu
et al 2010), non-standard vertical grids, and adaptive
horizontal grids and nested models that allow for a
higher resolution over regions of interest need to be
evaluated.

Finally, as a society, we need to care about the deep
ocean and the role it plays in our climate and ecosys-
tems.We are obsessed about space exploration, yet we
ignore this fascinating, mysterious, and challenging
environment that helps to regulate our climate, shel-
ters diverse life, and lies only a few kilometres away
from our coastal towns, in the deep dark ocean.
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